Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

نویسندگان

  • Meng Wang
  • Wilhelm Gruissem
  • Navreet K. Bhullar
چکیده

Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world's population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes) has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS) and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains) and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA) metabolism, in comparison to their non-transgenic siblings (NTS). Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of yellow stripe like protein family, and a transporter of the NA-Fe(II) complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotianamine, a Novel Enhancer of Rice Iron Bioavailability to Humans

BACKGROUND Polished rice is a staple food for over 50% of the world's population, but contains little bioavailable iron (Fe) to meet human needs. Thus, biofortifying the rice grain with novel promoters or enhancers of Fe utilization would be one of the most effective strategies to prevent the high prevalence of Fe deficiency and iron deficiency anemia in the developing world. METHODOLOGY/PRIN...

متن کامل

Iron Biofortification of Myanmar Rice

Iron (Fe) deficiency elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75 and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in t...

متن کامل

Association of Increased Grain Iron and Zinc Concentrations with Agro-morphological Traits of Biofortified Rice

Biofortification of rice (Oryza sativa L.) with micronutrients is widely recognized as a sustainable strategy to alleviate human iron (Fe) and zinc (Zn) deficiencies in developing countries where rice is the staple food. Constitutive overexpression of the rice nicotianamine synthase (OsNAS) genes has been successfully implemented to increase Fe and Zn concentrations in unpolished and polished r...

متن کامل

Constitutive Overexpression of the OsNAS Gene Family Reveals Single-Gene Strategies for Effective Iron- and Zinc-Biofortification of Rice Endosperm

BACKGROUND Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g(-1) Fe in endosperm, the main constituent of polished grain, but breedi...

متن کامل

Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition

To address the problem of iron-deficiency anemia, one of the most prevalent human micronutrient deficiencies globally, iron-biofortified rice was produced using three transgenic approaches: by enhancing iron storage in grains via expression of the iron storage protein ferritin using endosperm-specific promoters, enhancing iron translocation through overproduction of the natural metal chelator n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013